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Abstract

Displacement is a critical indicator for mechanical systems and civil structures.

Conventional vision‐based displacement recognition methods mainly focus on the

sparse identification of limited measurement points, and the motion representation of

an entire structure is very challenging. This study proposes a novel Nodes2STRNet for

structural dense displacement recognition using a handful of structural control nodes

based on a deformable structural three‐dimensional mesh model, which consists of

control node estimation subnetwork (NodesEstimate) and pose parameter recognition

subnetwork (Nodes2PoseNet). NodesEstimate calculates the dense optical flow field

based on FlowNet 2.0 and generates structural control node coordinates.

Nodes2PoseNet uses structural control node coordinates as input and regresses

structural pose parameters by a multilayer perceptron. A self‐supervised learning

strategy is designed with a mean square error loss and L2 regularization to train

Nodes2PoseNet. The effectiveness and accuracy of dense displacement recognition

and robustness to light condition variations are validated by seismic shaking table tests

of a four‐story‐building model. Comparative studies with image‐segmentation‐based

Structure‐PoseNet show that the proposed Nodes2STRNet can achieve higher

accuracy and better robustness against light condition variations. In addition,

NodesEstimate does not require retraining when faced with new scenarios, and

Nodes2PoseNet has high self‐supervised training efficiency with only a few control

nodes instead of fully supervised pixel‐level segmentation.

K E YWORD S

structural dense displacement recognition, deformable structural mesh model, deep‐learning‐
based monocular vision, self‐supervised learning

1 | INTRODUCTION

The identification of displacement of objects is significant for

mechanical systems and civil structures. A number of displace-

ment measurement techniques have been proposed, such as linear

variable differential transformer (LVDT), global positioning system

(GPS), laser displacement transducers, and so forth. However, the

LVDT and laser displacement transducer are inconvenient for field

monitoring of full‐scale systems and structures, and the resolution

and sampling rate of GPS are limited.
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Vision‐based displacement measurement methods have been

proposed for several decades.1–9 At the early stage, the methods

required installing artificial targets on structures. Wahbeh et al.10 installed

light‐emitting diode lights on bridges to measure structural displacement

in low‐light conditions, such as at night. However, the artificial targets are

either labor‐consuming or challenging to access in field applications.

Measurement methods based on the visual features of structures

without artificial targets have been proposed, for example, feature point

matching,11,12 digital image correlation (DIC),13 correlation filter, and

motion amplification. The feature point matching algorithm includes

scale‐invariant feature transform (SIFT),14,15 speeded‐up robust fea-

tures,16 and Kanade–Lucas–Tomasi (KLT).17 The algorithms calculate the

image feature points through the feature operator and match the feature

points on different images. In addition to the manual design of the

feature operator, Dong and Catbas18 designed a deep‐learning‐based

feature operator (Visual Geometry Group) and combined it with SIFT to

identify the displacement of a two‐span bridge model. The correlation

filter method19–21 used a self‐training iterative algorithm to track the

initial object. Zhao et al.22 combined support correlation filters and KLT

to improve the robustness of displacement measurement. However, all

these feature point matching methods can only obtain the single point

displacement of the structure. Helfrick et al.23 and Baqersad et al.24

applied the DIC algorithm to measure the vibration and rotation of

different types of structures and obtain the displacement field. Almeida

et al.25 used the DIC algorithm based on a set of images measuring the

planar deformation. In addition to the fixed camera, unmanned aerial

vehicles (UAVs) are also widely used to obtain videos and identify

structural displacement.26,27 The laser‐embedded light detection and

ranging technology is implemented into UAVs to scan three‐dimensional

(3D) point clouds to determine structural displacement.28,29

In the above vision‐based methods, the identification procedure

for displacement can be divided into two steps: identification of the pixel

displacement on the image, and then conversion of the pixel

displacement into real‐world displacement using scaling factor or camera

matrix transformation. Structure‐PoseNet30 proposed a structural

displacement identification method based on a deformable structural

3D mesh model (DSMM), and the displacement is directly obtained from

the coordinates in the mesh model. Generally, 3D dynamic displacement

recognition of a structure includes the identification of 3D models and

model poses. To identify the structural pose parameters, image features

should be first refined from video frames. These features should contain

the motion of structural components, exclude image background,

structural texture, light illumination, and shadow, and be sensitive to

subtle motion. Deep‐learning‐based computer vision techniques can be

used to extract structural features. To realize the abovementioned goals,

an appropriate two‐dimensional (2D) representation of structural motion

should be adopted. The semantic segmentation mask was selected as

the structural motion representation in Structure‐PoseNet.30 However,

it is sensitive to the variation of light conditions, and the semantic

segmentation mask lacks gradient variations, limiting its effectiveness in

identifying dense displacement. Moreover, the training efficiency is

limited because two new subnetworks of ParaNet and CompNet need

to be retrained when the resolution of the input image changes.

In addition to semantic segmentation, dense optical flow31,32 can

extract structural motion features in the video. Dense optical flow

recognizes the motion velocity field of pixels in the image while

ignoring other unnecessary information. Optical flow is sensitive to

small pixel movements, which is significant for motion identification.

After the representations of structural motion features are obtained,

they are further converted into structural pose parameters. This

process can be accomplished through deep‐learning networks.

In this study, Nodes2StrNet is proposed for dense structural

displacement identification, which consists of a control node estima-

tion subnetwork (NodesEstimate) and a pose parameter recognition

subnetwork (Nodes2PoseNet). The NodesEstimate subnetwork takes

each video frame as the input and outputs the 2D position of control

nodes, and the Nodes2PoseNet subnetwork takes the coordinates of

control nodes as the input and outputs the structural pose parameters.

Finally, the dense displacement of the structure is obtained based on

the deformed structural 3D mesh model.

The remainder of this paper is organized as follows. Section 2

introduces the proposed Nodes2STRNet. In Section 3, the proposed

method is validated through shaking table tests on a four‐story‐

building model. Conclusions are summarized in Section 4.

2 | METHODOLOGY

This study accomplishes dense structural displacement recognition

based on the following ideas. First, the motion of structural control

nodes in DSMM represents the motion of structure; therefore, a

NodesEstimate subnetwork is established to generate 2D position

coordinates of control nodes from the video frame as the input

based on dense optical flow. Then, a Nodes2PoseNet subnetwork is

established to model the mapping relationship between control node

coordinates and structural pose parameters. Finally, the structural 3D

mesh model is deformed according to the estimated structural pose

parameters, and the dense displacement of the structure is obtained.

An overall schematic of the proposed Nodes2STRNet is shown in

Figure 1. The workflow can be completed through three steps as follows:

Step 1: The NodesEstimate subnetwork uses each frame in the

original video of a structure as input, outputs the 2D dense

optical flow field compared with the original frame, and

calculates the 2D control node heatmap of each frame.

Step 2: The 2D control node coordinates are converted from the

control node heatmap of each frame by calculating the

centroid and inputted into the Nodes2PoseNet subnetwork

to obtain the structural pose parameters.

Step 3: The structural pose parameters are utilized to generate the

DSMM in each frame, and the dense displacement of the

structure is finally refined from the coordinates of vertices

in DSMM.

Section 2 is organized following a logical order as described

below. Before the methodology details, explanations of how the
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method is proposed and the overall framework are introduced.

Then, Section 2.1 shows how a DSMM is established for a structure

as it forms the geometry foundation of the proposed method, and

Section 2.2 introduces several key concepts and variable definitions

for the input and output quantification, mainly including control

nodes, 2D heatmaps, and coordinate transformation. Afterward,

Sections 2.3 and 2.4 describe the network structure of the

NodesEstimate and Nodes2PoseNet, respectively. Finally, Section 2.5

illustrates the efficient self‐supervised training strategy of the proposed

method.

2.1 | Deformable structural 3D mesh model

DSMM categorizes a structure into 3D elements, and each element is

represented by a 3D deformable mesh model. The mesh model in an

oscillation sequence is divided into the initial mesh model M0

(as shown in Figure 2) and the time‐variant mesh model Mt with

pose parameter Pt (defined later). The basic elements of the initial

mesh model M0 include vertices V0. A set of adjacent vertices is

connected with each other by edges E to form a face. All faces form

the surface of the mesh model M0 and can be expressed as an

undirected graph G with vertices V0 and edges E :

M G V E= ( , ).0 0 (1)

At the frame t, Mt shares the same undirected graph G with M0.

The coordinates of vertices Vt shift with the oscillation of the

structure. Therefore, Mt is an undirected graph consisting of new

vertices Vt and the same edge E :

M G V E= ( , ).t t (2)

A set of vertices V VS t t,i ∈ inside each cross‐section of the

structural component forms a common section S i n, = 1, 2, …,i t a, ,

which can also be regarded as an undirected graph:

F IGURE 1 Identification workflow of proposed Nodes2STRNet. NodesEstimate, control node estimation subnetwork; Nodes2PoseNet,
pose parameter recognition subnetwork.

S G V E i n= ( , ), = 1, 2, …, ,i t S S t S a, ,i i i (3)
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where na is the number of common sections and determined by the

vertex interval in the perpendicular direction of cross‐sections,GSi is a

subgraph of G, thus S Mi t t,  .

Structural pose parameters PS t,i control the motion of Si t, ,

as shown in Figure 3. A few specific sections S i n, = 1, 2, …,C bi

with equal intervals are selected as the control section, where

nb is a hyperparameter for the number of control sections.

The selection of nb is a trade‐off between the prediction accuracy

of dense displacement and the model parameter volume of

Node2STRNet.

Structural pose parameters PS t,i consist of the transition HS t,i and

rotation angle RS t,i :

S T H R S= ( , ; ),i t S t S t i, , , ,0i i (4)

where Si,0 is the initial state of the common section Si t, , and T is

the conversion function with transition and rotation transforma-

tions, assuming that the common section Si t, is rigid. Note that PS t,i

in common sections Si are calculated by cubic spline interpolation

of PS t,Ci
in control sections SCi. (PS t,Ci

is predicted by Nodes2

PoseNet introduced in Section 2.4 later.) Combining Equations

(1)–(4), Mt can be determined after all common sections Si are

obtained:

S T H R G V E M= [ , ; ( , )] .i t S t S t S S S t, , , ,0i i i i i  (5)

Considering that GSi and ESi are time‐invariant and VS ,0i is known,

Mt is determined by HS t,i and RS t,i . In summary, Figure 3 shows the

schematics of structural pose parameters in DSMM.

2.2 | Definition of control nodes and 2D heatmaps

In Sections 2.2 and 2.3, the NodesEstimate subnetwork is

designed to calculate the 2D control node heatmaps from each

video frame. In Section 2.4, control node heatmaps are fed into

the proposed Nodes2PoseNet subnetwork to obtain the struc-

tural pose parameters. Therefore, structural control nodes are

used as intermediate connections between two subnetworks of

Nodes2STRNet.

Heatmaps of structural control nodes represent structural

motion and can be calculated by dense optical flow. Nodes2PoseNet

uses FlowNet 2.032 to extract dense optical flow, representing the

velocity field in a video frame. Compared to semantic segmentation

masks, the dense optical flow contains sufficient information density

because of the pixel‐level velocity gradient.

Control nodes N X Y Z( , , )c3 have a clear physical meaning of

spatial location in real‐world 3D coordinates, as shown in Figure 4.

Control nodes are usually set on the joints of structural elements, for

example, joints of columns and beams at each story of a frame

structure. A higher density of control nodes can result in higherF IGURE 2 Initial structural 3D model of a four‐story building.

F IGURE 3 Schematics of structural pose parameters in DSMMwith common and control sections. DSMM, deformable structural 3D mesh model.
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spatial resolution of the 3D mesh model, which improves the

identification accuracy of dense structural displacement.

To calculate the 2D coordinates of control nodes N x y( , )c2 in the

initial frame, the 3D coordinates of control nodes in the initial 3D

mesh model and the camera matrix are required:

N R N T= + ,c c c c2 3 (6)

where Rc and Tc represent the rotation matrix and translation matrix

of the camera, respectively.

The 2D heatmaps in the initial frame Hmi
0 are generated around

2D control nodes following a normalized 2D Gaussian distribution:

( ) ( )
( )

Hm
N N σ N N σ n

N N σ n
=

, , , ≥ ,

0, , < ,

i
c
i

c
i

c

0

2 2 th

2
1

th








(7)

where i is the index of control nodes i N= 1, 2…, nodes, Nnodes is the

number of control nodes, N N σ( , )c
i
2 is the probability density function

F IGURE 4 Control node transformation from 3D real‐world coordinates to 2D image coordinates through the camera matrix.

F IGURE 5 Heatmaps of control nodes in the initial video frame.
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of normalized 2D Gaussian distribution, Nc
i
2 denotes the 2D

coordinates of the ith control nodes in the initial video frame, σ is

the standard deviation representing the pixel range around control

nodes, and nth is the preset threshold value. The schematics of

generating the heatmaps from 2D control nodes are shown in

Figure 5.

2.3 | NodesEstimate subnetwork

The NodesEstimate subnetwork utilizes each video frame as input,

predicts the dense optical flow between each frame and the initial

frame by FlowNet 2.0, and then calculates the heatmaps of 2D

control nodes for each frame, as shown in Figure 1. The dense

optical flow represents the pixel‐level displacement vector field

between the original frame and the subsequent image. As shown in

the left part of Figure 1, the optical flow of two adjacent frames can

be obtained by FlowNet 2.0. The optical flow field can be converted

into RGB visualization through the color wheel conversion, where

the modulus and direction of the optical flow vector are denoted as

saturation and hue, respectively, as shown in Figure 6. By applying

the predicted dense optical flow field to the heatmaps of control

nodes in the initial frame, the corresponding heatmaps of control

nodes in the following frames can be obtained, as shown in the right

part of Figure 1.

The heatmap of ith control node in the tth frame Hmt
i is

obtained from

( )Hm I I Hm= NodesEstimate Flow , , ,t
i

t
i

0 0







 (8)

where I I,t 0 denote the tth and initial frames, Flow denotes the

optical flow calculation process (FlowNet 2.032 in this study), Hmi
0

denotes the heatmap of the ith control node in the initial frame, and

can be obtained from Equation (7) in Section 2.2. The NodesEsti-

mate subnetwork only performs the feedforward interference

process to calculate the control node heatmaps using the pretrained

FlowNet 2.0.

2.4 | Nodes2PoseNet subnetwork

After the 2D coordinates are obtained by the NodesEstimate

subnetwork, the Nodes2PoseNet subnetwork is established to

generate structural pose parameters from the 2D coordinates of

control nodes.

The heatmap centroid coordinate of the ith control node in the

tth frame can be calculated using the equations:

N CH CW

CH
x Hm x y

Hm x y
CW

y Hm x y

Hm x y

= , ,

=
∑ ∑ × ( , )

∑ ∑ ( , )
, =

∑ ∑ × ( , )

∑ ∑ ( , )
,

c t t
i

t
i

t
i x

H
y
W

t
i

x
H

y
W

t
i t

i x
H

y
W

t
i

x
H

y
W

t
i

2,

=1 =1

=1 =1

=1 =1

=1 =1









(9)

where H and W, respectively, denote the height and width of the

frame and are indexed by x and y,Hmt
i denotes the heatmap of the ith

control node in the tth frame and can be obtained using Equation (8)

in Section 2.3, CHt
i and CWt

i denote the centroid coordinates Nc t
i
2, of

ith control node in the tth frame in the height and width directions,

respectively.

F IGURE 6 Color wheel conversion for RGB visualization of optical flow with arrow and modulus annotation.

F IGURE 7 MLP architecture of Nodes2PoseNet subnetwork.
MLP, multilayer perceptron.
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As shown in Figure 1, the Nodes2PoseNet subnetwork utilizes

the heatmap centroid coordinates as input and predicts the structural

pose parameters as output:

{ } { }H R N, = Nodes2PoseNetS t S t c t
i

, , 2,i i
(10)

The Nodes2PoseNet subnetwork utilizes a network architecture of

multilayer perceptron (MLP) with four hidden layers (as shown in

Figure 7) and a self‐supervised training strategy without manual

annotations (details about the self‐supervised training strategy will be

explained in Section 2.5). According to Equation (10), each video frame

can generate a pair of input (2D centroid coordinates of control nodes

F IGURE 8 Overall schematic of a self‐supervised training strategy for Nodes2PoseNet. Nodes2PoseNet, pose parameter recognition
subnetwork.

TABLE 1 Earthquake ground motion with various intensities of shaking table tests.

BM16 BM18 BM19 BM22 BM25

Earthquake ground motion Shanghai artificial wave El Centro Wenchuan Artificial wave Wenchuan

Intensity 0.2g 0.4g 0.4g 0.6g 0.6g

(A) (B)

(C) (D)

F IGURE 9 Waveforms of selected earthquake ground motions in shaking table tests. (A) BM16 Shanghai artificial wave, (B) BM18 El Centro,
(C) BM19/BM25 Wenchuan, and (D) BM22 artificial wave.
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with a dimension of N1 × 2 nodes) and output (with a dimension of

structural pose parameters in all control sections). Ten neurons are

equally included in each of the four hidden layers.

Compared with the Structure‐PoseNet architecture in the

previous study,30 the Nodes2PoseNet subnetwork can be directly

transferred from the training data sets to the actual recognition

scenarios. Artificially generated data in ParaNet of Structure‐PoseNet

cannot perfectly simulate some real‐world scenarios because of slight

differences in structural morphology and prediction variations

between semantic segmentation masks from synthetical environ-

ments and actual videos. Therefore, prediction errors exist in real‐

world recognition using Structure‐PoseNet from the training data. As

a comparison, the Nodes2PoseNet subnetwork utilizes the centroid

coordinates of a few control nodes as input, which only includes

TABLE 2 The 3D real‐world and 2D image coordinates of
control nodes in the initial structural model.

Control
node No. Story

3D coordinates
(unit: meter)

2D coordinates
(unit: pixel)

X Y Z x y

1 Bottom 1.5 0.35 0.75 292.176 462.312

2 Story 1 1.5 1.85 0.75 290.5061 335.5144

3 Story 2 1.5 3.35 0.75 288.9835 219.9069

4 Story 3 1.5 4.85 0.75 287.5896 114.0707

5 Story 4 1.5 6.35 0.75 286.3087 16.81725

6 Bottom −1.5 0.35 0.75 160.3105 441.8237

7 Story 1 −1.5 1.85 0.75 163.6637 346.2861

8 Story 2 −1.5 3.35 0.75 166.7899 257.2177

9 Story 3 −1.5 4.85 0.75 169.7114 173.9829

10 Story 4 −1.5 6.35 0.75 172.4476 96.02681

11 Bottom −1.5 0.35 −0.75 234.4249 435.8794

12 Story 1 −1.5 1.85 −0.75 235.1104 349.4524

13 Story 2 −1.5 3.35 −0.75 235.7536 268.348

14 Story 3 −1.5 4.85 −0.75 236.3584 192.0891

15 Story 4 −1.5 6.35 −0.75 236.9282 120.2543

16 Bottom 1.5 0.35 −0.75 371.4525 452.0849

17 Story 1 1.5 1.85 −0.75 366.7597 340.8523

18 Story 2 1.5 3.35 −0.75 362.4335 238.309

19 Story 3 1.5 4.85 −0.75 358.4325 143.4752

20 Story 4 1.5 6.35 −0.75 354.7214 55.51296

F IGURE 10 Representative recognition results of dense optical flow by NodesEstimate subnetwork. NodesEstimate, control node
estimation subnetwork.

F IGURE 11 Training loss descending curve for Nodes2PoseNet
subnetwork. MSE, mean‐square error; Nodes2PoseNet, pose
parameter recognition subnetwork.
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F IGURE 12 Comparison results of recognized and LVDT displacement time‐histories and frequency distributions in BM16. FFT, fast Fourier
transform; LVDT, linear variable differential transformer; PGAs, peak ground accelerations.

F IGURE 13 Comparison results of recognized and LVDT displacement time‐histories and frequency distributions in BM18. FFT, fast Fourier
transform; LVDT, linear variable differential transformer; PGAs, peak ground accelerations.
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F IGURE 14 Comparison results of recognized and LVDT displacement time‐histories and frequency distributions in BM19. FFT, fast Fourier
transform; LVDT, linear variable differential transformer; PGAs, peak ground accelerations.

F IGURE 15 Comparison results of recognized and LVDT displacement time‐histories and frequency distributions in BM22. FFT, fast Fourier
transform; LVDT, linear variable differential transformer; PGAs, peak ground accelerations.

238 | ZHAO ET AL.

 27671402, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

sd2.12083, W
iley O

nline L
ibrary on [03/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



necessary information and avoids uncontrollable noise compared to

semantic segmentation masks of all pixels.

2.5 | Self‐supervised training strategy of
Nodes2Posenet

Figure 8 shows the overall schematic of the self‐supervised training

process for the Nodes2PoseNet subnetwork, including the following

steps:

(i) Structural pose parametersH Rˆ , ˆ are randomly generated following

a uniform distribution in a fixed range as the ground‐truth values:

H H H R R Rˆ = Uniform( , ), ˆ = Uniform( , ),a b a b (11)

where Ha, Hb, Ra, Rb denote the preset lower and upper bounds

for structural pose parameters H R, , and “Uniform” denotes the

uniform distribution function.

(ii) The randomly generated structural pose parametersH Rˆ , ˆ are applied

to the initial structural 3D model, and the 3D spatial coordinates of

all control nodes can be obtained according to Equation (5).

(iii) The 3D spatial coordinates are converted into 2D camera

coordinates by camera matrix transformation to generate the 2D

coordinates of control nodes according to Equation (6).

(iv) The flattened 2D coordinates of control nodes are utilized as input

to the Nodes2PoseNet subnetwork according to Equation (10),

output the predicted H and R, calculate the regression loss with the

ground‐truth values of Ĥ and R̂, and update the Nodes2PoseNet

subnetwork by the Adam algorithm.

The mean‐square error (MSE) loss function with L2

regularization is adopted to calculate the regression error between

ground‐truth structural pose parameters and predicted values

corresponding to all the control nodes:

L H H λ R R λ L

N
H H λ R R λ L

=MSELoss( , ˆ ) + MSELoss( , ˆ) +

= ∑ ( − ˆ ) + ( − ˆ ) + ,
N i i i i i

1 2 2

1
=1
nodes 2

1
2

2 2
nodes









(12)

where L denotes the loss function to update the Nodes2PoseNet

subnetwork, Nnodes denotes the number of control nodes, λ1

denotes the weight coefficient between H and R, L2 denotes the

regularization term to avoid overfitting, and λ2 denotes the

regularization coefficient.

(v) Return to the first step, repeat steps (i)–(iv), and iteratively

update Nodes2PoseNet until the loss reduces below a preset

value ε (set as 10−5 in this study).

3 | VALIDATION EXPERIMENT

3.1 | Experimental setups of shaking table test
and network training

To verify the identification accuracy of dense displacement and the

robustness to different light conditions, a seismic shaking table test of

a four‐story‐building model is conducted. As shown in Figure 4, four

F IGURE 16 Comparison results of recognized and LVDT displacement time‐histories and frequency distributions in BM25. FFT, fast Fourier
transform; LVDT, linear variable differential transformer; PGAs, peak ground accelerations.
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LVDTs (i.e., DX1, DX2, DX3, and DX4) were installed to measure the

displacement in the vibration direction with a sampling frequency of

256Hz. A fixed camera was set at a distance of 8m from the building

model with a video frame rate of 60 Hz and an original resolution of

2160 × 3840. Five videos, namely, BM16, BM18, BM19, BM22, and

BM25, were recorded under different earthquake ground motions

and light illuminations. Table 1 shows the investigated earthquake

ground motions with their intensities of the five videos during the

shaking table tests, and the corresponding waveforms are shown in

Figure 9. More details can be found in previous studies.22,30

As shown in Figure 5, a total of 20 control nodes are set on the

junction points of the ground and the first floor and joints of columns

and beams at each story. The 3D coordinates of these control points

are converted into 2D image coordinates by the known camera

matrix, as shown in Table 2.

Each video frame is an input to the NodesEstimate subnetwork,

which predicts the dense optical flow between itself and the initial

frame, and this predicted dense optical flow field is converted into

RGB images for visualization through color wheel conversion. Some

representative recognition results of dense optical flow by the

NodesEstimate subnetwork are shown in Figure 10. The number

above each subfigure represents the frame number in the video, and

the structure motion direction can be intuitively observed by

different hues in the RGB map of the optical flow field. The length

of the optical flow vector is normalized to the range between 0 and 1.

The hyperparameters for training the Nodes2StrNet subnetwork

are set as follows. The upper and lower bounds of the uniform

distribution to randomly generated structural pose parameters H and R

are H = −0.2a , H = 0.2b , and R R= = 0a b due to the 1D motion

direction of the shaking table. The Adam optimization is utilized with

an initial learning rate of 0.0001, a batch size of 5, a total number of

iterations inside an epoch of 100, and a training epoch of 50. A

learning rate decay strategy is adopted, reducing by half in every

10 epochs. The loss descending curve during the training process of

Nodes2PoseNet subnetwork is shown in Figure 11.

3.2 | Results and discussion

Figures 12–16 show the comparison results between the recognized

displacement time‐histories by the proposed Nodes2STRNet and

measured displacement time‐histories by LVDT at DX1–4 and the

corresponding frequency transformation by the fast Fourier trans-

form (FFT) algorithm. The results show that the recognized multistory

displacements by the proposed Nodes2STRNet match well with

those of LVDTs under different peak ground accelerations. The

prediction error tends to be larger at the bottom of the structure, and

one possible reason is that some parts at the bottom are missing in

specific video frames, leading to the recognition inconsistency in

actual videos using a well‐trained model.

F IGURE 17 Dense displacement recognition results by
proposed Nodes2STRNet in BM16. (A) Schematic of dense
displacement measurement points of MP.1–17 (unit: millimeter).
(B) Recognized time histories of dense displacement. PGA, peak
ground acceleration.
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Figure 17 shows the dense displacement recognition results

by the proposed Nodes2STRNet in BM16, in which MP.1–17

represents the dense measurement points along the height

direction of the structure. More results of BM18, BM19, BM22,

and BM25 are shown in Figures A1–A4 of the appendix. The

results verify that the proposed Nodes2STRNet can obtain dense

structural dynamic displacement from a monocular vibration

video.

F IGURE 18 Comparisons of recognized multistory displacement histories and FFT results between Structure‐PoseNet and proposed
Nodes2STRNet (BM22). FFT, fast Fourier transform; LVDT, linear variable differential transformer; PGA, peak ground acceleration.
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F IGURE 19 Comparisons of recognized multistory displacement histories and FFT results between Structure‐PoseNet and
proposed Nodes2STRNet (BM25). FFT, fast Fourier transform; LVDT, linear variable differential transformer; PGA, peak ground
acceleration.
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Figures 18 and 19 compare the recognized multistory displace-

ment histories and the corresponding FFT results between Structure‐

PoseNet30 and the proposed Nodes2STRNet in BM22 and BM25.

The recognition results of Structural‐PoseNet show noticeable

prediction errors, while those from Nodes2STRNet match well with

the measurements from LVDT. In addition, the FFT results of

Structure‐PoseNet have a noise peak at 20Hz because of the video

flicker effect,33 while Nodes2StrNet has robustness against the

variation of light conditions.

Figure 20 compares the effects of light condition variations on

the model robustness of Structure‐PoseNet and Nodes2STRNet.

Apparent pixel‐level noises exist in the semantic segmentation masks

of Structure‐PoseNet for BM25 compared to BM16. However, the

corresponding control nodes are well identified by Nodes2STRNet

with good robustness. The results validate that the proposed

Nodes2StrNet is more robust to light condition variations among

different video frames. Similarly, low video quality can cause significant

recognition noise in semantic segmentation masks for Structure‐

PoseNet, affecting the recognition accuracy of dense structural

displacements. As a comparison, the proposed Nodes2STRNet is

flexible to the video resolution because the NodesEstimate subnet-

work does not require a training process; however, Structure‐PoseNet

requires a fixed input resolution and should be retrained when faced

with a new video with a different resolution.

Table 3 compares the average root‐mean‐square error (RMSE)

and pixel‐wise root‐mean‐square error (RMSE‐PX) for DX1–4

using Structure‐PoseNet30 and the proposed Nodes2STRNet.

The results show that for BM16, BM19, BM22, and BM25, the

proposed Nodes2StrNet shows significant improvements, further

validating its robustness against light condition variations and

superiority to Structure‐PoseNet.30 For BM18, the possible reason

may be that control nodes at the bottom of the structure exceed

the image boundary, leading to the inaccurate calculation of

coordinates. The results also indicate that the view field of the

camera should be adjusted to ensure that the maximum range of

structural motion is within each video frame during the structural

vibration process, which may be achieved by increasing the object

distance and decreasing the focus distance. Specifically, the

corresponding strategy of selecting optimal internal and external

camera parameters should be determined according to the

properties of the structural model and earthquake ground motion

in the shaking table test.

F IGURE 20 Effects of light condition variation on model robustness of Structure‐PoseNet and Nodes2STRNet.

TABLE 3 Average errors of recognized displacements for DX1–4
using Structure‐PoseNet and Nodes2STRNet.

BM16 BM18 BM19 BM22 BM25

Average RMSE of DX1–4

Structure‐PoseNet (mm)30 6.81 4.21 3.48 12.49 16.09

Nodes2STRNet
(proposed) (mm)

6.79 10.71 2.21 4.31 2.46

Average RMSE‐PX of DX1–4

Structure‐PoseNet (px)30 0.43 0.27 0.25 1.23 1.60

Nodes2STRNet
(proposed) (px)

0.43 0.69 0.16 0.43 0.25

Abbreviations: RMSE, root‐mean‐square error; RMSE‐PX, pixel‐wise
root‐mean‐square error.
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4 | CONCLUSION

This study proposes a novel Nodes2STRNet for structural dense

displacement recognition based on DSMM and motion representation.

The main conclusions are summarized as follows:

The proposed Nodes2STRNet comprises two subnetworks of

NodesEstimate and Nodes2PoseNet. The NodesEstimate subnet-

work utilizes each video frame as input, generates the dense optical

flow field based on FlowNet 2.0, and outputs structural control

nodes. The Nodes2PoseNet uses structural control nodes as input

and predicts the structural pose parameters using an MLP.

Various DSMMs are generated according to structural pose

parameters with motion representation for the entire structure, in

which structural control nodes are utilized as intermediate connections

between two subnetworks. The dense displacements of the structure

can finally be obtained from DSMMs in different video frames.

A self‐supervised learning strategy is designed to train the

Nodes2PoseNet subnetwork. An MSE loss with L2 regularization is

adopted to calculate the regression error between the ground‐truth

and predicted structural pose parameters of all control nodes.

The recognition effectiveness and accuracy of dense displacement

and robustness to light condition variations are validated by shaking

table test of a four‐story frame structure scale model. The results

show that the average RMSE‐PX of multistory displacement histories

using the proposed Nodes2STRNet ranges from 0.16 to 0.69 pixels.

Compared with image‐segmentation‐based Structure‐PoseNet

using all pixel information, the proposed Nodes2STRNet gains higher

robustness against light condition variations with a more straightfor-

ward self‐supervised training process using only a few control nodes.

In addition, the proposed Nodes2STRNet obtains higher flexibility in

the input video resolution because the NodesEstimate subnetwork

applies a pretrained FlowNet 2.0 to generate the dense optical flow

field without additional training faced with new scenarios.

In addition, the effects of the P wave and S wave on the

structural dense displacement recognition based on DSMM and

motion representation by the proposed Nodes2STRNet will be

further investigated in a future study.
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F IGURE A1 Dense displacement recognition results by Nodes2STRNet in BM18. PGA, peak ground acceleration.
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F IGURE A2 Dense displacement recognition results by Nodes2STRNet in BM19. PGA, peak ground acceleration.
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F IGURE A3 Dense displacement recognition results by Nodes2STRNet in BM22. PGA, peak ground acceleration.
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F IGURE A4 Dense displacement recognition results by Nodes2STRNet for BM25. PGA, peak ground acceleration.
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